1th Mar. 16 Rev. C

Industrial Mini I/O Connector

1. Scope

1.1 Contents

This specification covers the requirements for product performance, test methods and quality assurance provisions of Industrial Mini I/O Connector.

Applicable product description and part numbers are as shown in Fig 1.

P/N	Description
1971885-1	
1-1971885-1	la dustrial Marial Mini I/O Control MT ture I
2271656-1	Industrial Vertical Mini I/O Connector SMT type I
1-2271656-1	
1971885-2	
1-1971885-2	Industrial Vertical Mini I/O Connector SMT type II
2271656-2	Industrial Vertical Mini I/O Connector SMT type II
1-2271656-2	
1971886-1	Industrial Vertical Mini I/O Connector THR type I
1971886-2	Industrial Vertical Mini I/O Connector THR type II

(Fig 1)

2. Applicable Documents:

The following documents form a part of this specification to the extent specified herein. In the event of conflict between the requirements of this specification and the product drawing, the product drawing shall take precedence.

In the event of conflict between the requirements of this specification and the referenced documents, this specification shall take precedence.

2.1 TE Specifications:

A. 501-106087-1: Test Report: (SMT TYPE)B. 501-106087-2: Test Report: (DIP TYPE)

Connectivity

PRODUCT SPECIFICATION

108-106087 1th Mar. 16 Rev. C

2.2 Commercial Standards and Specifications:

A. EIA364 series

3. Requirements:

3.1 Design and Construction:

Product shall be of the design, construction and physical dimensions specified on the applicable product drawing.

3.2 Materials:

Receptacle:

A. Contact:

Material: Copper alloy

Finish: Nickel plating all over Contact area: Au plating Soldering area: Tin plating

B. Housing:

Material: Thermo plastic Flammability: UL94 V-0

C. Shell:

Material: Phosphor Bronze

Finish: Tin plating over Ni under-plating

3.3 Ratings:

A. Voltage Rating: 60V AC (rms)

B. Current Rating: 0.5A

C. Temperature Rating: −40°C to 85°C

3.4 Performance Requirements and Test Descriptions:

The product shall be designed to meet the electrical, mechanical and environmental performance requirements specified in Fig.2.

All tests shall be performed in the room temperature, unless otherwise specified.

1 108-106087 1th Mar. 16 Rev. C

3.5 Test Requirements and Procedures Summary

Para	Test Items	Requirements	Procedures						
3.5.1	Examination of	Meets requirements of	Visual inspection						
	Product	product drawing.	No physical damage.						
		Electrical Require	ments						
3.5.2	Termination	40 mΩMax. (Initial)	Subject mated contacts assembled in housing						
	Resistance	50 mΩMax. (After Test)	to 20mV Max open circuit at 100mA. Fig.3.						
	(Low Level)		EIA364-23						
3.5.3	Insulation	500MΩMin.	100V DC. 1minute hold.						
	Resistance		Test between adjacent circuits of mated						
			connectors.EIA364-21						
3.5.4	Dielectric	No creeping discharge or	DWV test condition (1 minute hold);						
	withstanding Voltage	flashover shall occur.	1000V DC : Between contact to contact						
		Leak current: 0.5mA Max.	1500V DC : Between contact to shell						
			Test between adjacent circuits of mated						
			connectors. EIA364-20						
3.5.5	Temperature Rising	30°CMAX under loaded	Measure temperature rising by energized						
		rating current.	current.						
	•	Mechanical Require	ements						
3.5.6	Connector	30 N Max.	Operation speed: 10mm/min.						
	Mating Force		Measure force necessary to mate samples.						
			EIA364-13						
3.5.7	Connector	30 N Max.	Set lock operation part of plug connector to						
	Un-mating Force		open. Operation speed: 10mm/min.						
			Measure force necessary to unmate samples.						
			EIA364-13						
3.5.8	Durability	Termination Resistance	Operation Speed :200cycles/hour						
	(Repeated	(Low Level).	No. of Cycles: 1500cycles.(SMT HDR)						
	Mate/Unmating)		No. of Cycles: 1500cycles.(DIP HDR)						
			EIA364-09						
3.5.9	Cable Pull-Out	No damage on soldering	Apply axial load to cable on plug connector.						
		place.	Fig.4 EIA364-38						
		No disconnection between	Retention force for KIT products shall be						
		shield wire to shell.	determined by cable.						
			Retention force for CABLE ASSY products						
			shall be specified on CABLE ASSY drawing.						

1th Mar. 16 Rev. C

Fig.2(CONT.)

Para	Test Items	Requirements	Procedures
3.5.10	Lock Strength	Connector must not unmate.	Mate connector and make lock mechanism
		No destruction on Lock	effective.
		elements, no destruction on	Apply axial load to cable on plug connector.
		Receptacle connector with	98 N. 1 minute. Fig.4
		PC-Board and no harmful	
		damage on other parts.	
3.5.11	Elasticity	Connector must not unmate.	Mate connector and make lock mechanism
		No destruction on Lock	effective.
		elements, no destruction on	Apply axial load to cable on plug connector
		Receptacle connector with	20N and bend cable to direction 45 degrees
		PC-Board and no harmful	each on both side up to 20 cycles.
		damage on other parts.	Fig.5
3.5.12	Fixed Strength to	No destruction on	Mate connector. Apply load to edge of plug
	PC-Board	Receptacle connector with	connector.
		PC-Board and no harmful	Load one direction on one sample. Fig 6
		damage on other parts.	40 N. 1 minute for PN:*-227165-*
			15N. 1 minute for PN:*-1971885-*
			Recommend panel protection for bigger
			strength application (Fig.7)
3.5.13	Vibration	No electrical discontinuity	Subject mated connectors to 10-55-10 Hz
	(Low Frequency)	greater than 1µsec shall	traversed in 1 minute at 1.52mm amplitude 2
		occur.	hours each of 3 mutually perpendicular planes.
		Termination Resistance	EIA364-28
		(Low Level).	
3.5.14	Physical Shock	No electrical discontinuity	Accelerated Velocity : 30G
		greater than 1µsec shall	Waveform : Half-sin wave
		occur.	Duration: 11 millisecond
		Termination Resistance	Number of drops: 3 drops each to normal and
		(Low Level).	reversed directions of X, Y and Z axes, totally
			18 drops.
			EIA364-27

1th Mar. 16 Rev. C

	connectivity		1"' Mar. 16 Rev. C						
3.5.15-1	Solder ability	Appearance of the specimen	Eutectic solder						
	(DIP Products)	shall be inspected after the	Solder Temperature : 235±5°C						
		test with the assistance of a	Immersion Duration: 3±0.5 sec.						
		magnifier capable of giving a	Lead-Free solder (Sn-Ag-Cu)						
		magnifier of 10X.	Solder Temperature : 245±5°C						
		The soldered surface shall	Immersion Duration: 3±0.5 sec.						
		be covered with a smooth	MIL-STD-202 Method 208						
		solder coating with no more							
		than small amounts of							
		scattering imperfections							
		such as pin-holes or un-wet							
		or de-wet areas.							
Para	Test Items	Requirements	Procedures						
3.5.15-2	Solder ability	Appearance of the specimen	Conform to IEC60068-2-58 7.Solder reflow						
	(SMT Products)	shall be inspected after the	method.						
		test with the assistance of a	Preheating: 150±10°C, 60 ∼120sec						
		magnifier capable of giving a	Soldering: 235±5°C, 10±1 sec						
		magnifier of 10X.	Number of reflow : 2						
		The soldered surface shall							
		be covered with a smooth							
		solder coating with no more							
		than small amounts of							
		scattering imperfections							
		such as pin-holes or un-wet							
		or de-wet areas.							
	,	Environmental Requi	rements						
3.5.16	Temperature Life	Termination resistance	Mated connector						
	(Heat Aging)	(Low Level)	85°C, 315 Hours						
			EIA364-17						
3.5.17	Humidity	Insulation resistance	Mated connector						
	(Steady State)	Dielectric Strength	90-95%R.H. 40°C						
		Termination resistance	240 hours						
		(Low Level)	EIA364-31						
3.5.18	Thermal Shock	Termination Resistance	Mated connector						
		(Low Level)	-55°C/ 30 min. +85°C/ 30 min.						
			Making this a cycle, repeat 10 cycles.						
			EIA364-32						
3.5.19	Humidity-Temperatu	Insulation resistance	Mated connector, 25∼65°C,						
	re	Dielectric Strength	80~100%R.H. 7 cycles						
	Cycling	Termination resistance	Cold shock –10°C performed						
		(Low Level)	EIA364-31						

1th Mar. 16 Rev. C

		connectivity		1 1011: 1011:01
	3.5.20	Salt Spray	Termination resistance(Low	Mated connector
			Level)	Salt concentration: 5%, 35±2°C,
			After it is left for 1 hour under	48 hours
			a steady	EIA364-26
			temperature/humidity, it is	(MIL-STD-202F Method 101 Condition B)
			measured.	
ĺ	3.5.21	Hydrogen sulfide	Termination resistance	Mated connector
		Gas (H ₂ S)	(Low Level)	H ₂ S Gas :3±1ppm, 40±2°C, 96 hours
1				

Fig.2(CONT.)

Para	Test Items	Requirements	Procedures
3.5.22-1	Resistance to	No physical damage shall	Test connector on PCB.
	Soldering Heat	occur.	Solder Temperature : 260±5°C
	(DIP Products)		Immersion Duration : 10±0.5 sec.
			AMP Spec. 109-5204, Condition B
			MIL-STD-202, Condition 210
			In case of manual soldering iron, apply it as
			360±10°C for 3±0.5°C seconds without
			forcing pressure to affect the tine of contact.
3.5.22-2	Resistance to	Appearance of the specimen	Test connector on PC-Board.
	Soldering Heat	shall be inspected after the	Reflow
	(SMT Products)	test with the assistance of a	Average ramp rate: 3°C/ sec max
		magnifier capable of giving a	Preheat temperature:150~200°C
		magnification of 10X, No	Preheat time: 60~180sec
		physical damage such as	Ramp to peak: 3°C/ sec max
		cracks, chips or malting.	Time over liquid's (217°C):60 ~150 seconds
			Peak temperature: 260 +0/-5 °C
			Time within 5°C of peak:20 ∼40 sec
			Ramp - cool down: 6°C/ sec max
			Time 25°C to peak: 8 min max
			After reflow, then DIP (Legs of shell)
			Solder temperature 260°C±5°C
			Immersion duration 10±1sec.
			Number of reflow : 2
			EIA-364-56

NOTE

Shall meet visual requirements, show no physical damage, and meet requirements of additional tests as specified in the Product Qualification and Re qualification Test Sequence shown in Figure 3.

Fig. 2 (END)

PRODUCT SPECIFICATION

108-106087 1th Mar. 16 Rev. C

3.6 Product Qualification Test Sequence

Test Examination	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
			1	ı		1	1	1	1	ı	1	1	1	ı	1	
Examination of	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
Product		-		-										-		
Termination																
Resistance				2,6			2,4	2,5		2,4	2,4	2,4	2,4	2,4	2,4	
(Low Level)																
Insulation Resistance	2,5	2,5														
Dielectric withstanding	3,6	3,6														
Voltage	3,0	3,0														
Temperature Rising			2													
Conn. Mating Force				3												
Conn. Unmating				4												
Force				4												
Durability																
Repeated				5												
mate/Unmating																
Cable Pull-Out					_											
Lock Strength					2											
Elasticity						2										
Fixed strength to																
PC-Board							3									
Vibration																
(High Frequency)								3								
Physical Shock								4								
Solder ability									2							
Temperature Life										_						
(Heat Aging)										3						
Humidity	_										_					
(Steady State)	4										3					
Thermal Shock												3				
Humidity-Temperature													_			
Cycling		4											3			
Salt Spray														3		
Hydrogen sulfide Gas																
(SO ₂)															3	
Resistance to																_
Soldering Heat																2

(a) Numbers indicate sequence in which tests are performed.

PRODUCT SPECIFICATION

108-106087

1th Mar. 16 Rev. C

4. QUALITY ASSURANCE PEOVISIONS

4.1 Qualification Testing

A. Specimen Selection

Plugs and jacks shall be prepared in accordance with applicable Instruction Sheet and shall be selected at random from current production. Each test group shall consist of a minimum of 5 specimens unless otherwise stated.

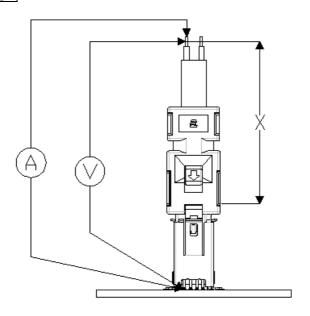
B. Test Sequence

Qualification inspection shall be verified by testing specimens as specified in figure 3.

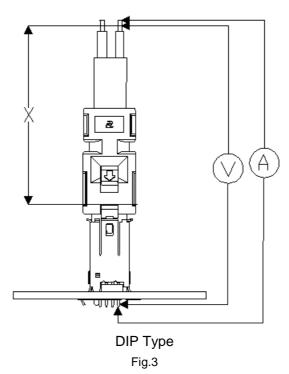
4.2 Requalification testing

If changes significantly affecting form, fit or function are made to the product or manufacturing process or controlling industry specification, product assurance, shall coordinate requalification testing, consisting of all or part of the original testing sequence as determined by development/product, quality and reliability engineering.

4.3 Acceptance


Acceptance is based on verification that the product meets the requirements of Figure 2. Failures attributed to equipment, test setup or operator deficiencies shall not disqualify the product. If product failure occurs, corrective action shall be taken and samples resubmitted for qualification. Testing to confirm corrective action is required before resubmitted.

4.4 Quality conformance Inspection


The applicable quality inspection plan shall specify the sampling acceptable quality level to be used. Dimensional and functional requirements shall be in accordance with the applicable product drawing and this specification.

1th Mar. 16 Rev. C

SMT Type

(Cable balk resistance of length X is deducted from measurement value.)

Termination Resistance Measurement Points

1th Mar. 16 Rev. C

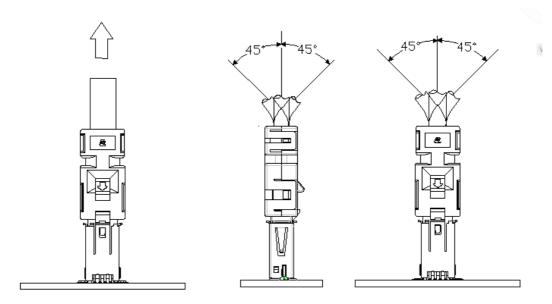


Fig.4

Cable Pull-Out、 Lock Strength Measurement Method (Fig of DIP Type is omitted.)

Fig.5
Elasticity Measurement Method
(Fig of DIP Type is omitted)

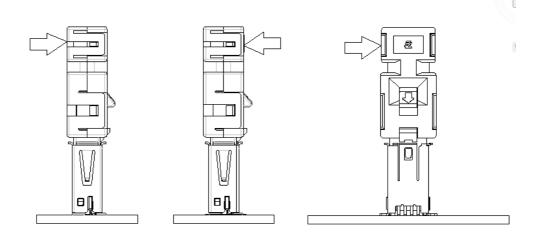


Fig.6
(Fix P.C.Board. Load as shown figure、1 direction per 1 sample.)
Fixed strength to PC-Board Measurement Points
(Fig of DIP Type is omitted)

PRODUCT SPECIFICATION 1

108-106087

1th Mar. 16 Rev. C

Fig.7 (Recommend panel protection for bigger strength application) (Fig of DIP Type is omitted)